
JOURNAL OF COMPUTATIONAL PHYSICS 66, 458468 (1986) 

Ideal M H D Properties 
for Proposed Noncircular Tokamaks* 

F. J. HELTON AND J. M. GREENE 

GA Technologies Inc., San Diego, California 92138 

Received August 15, 1985; revised January 9, 1986 

DEDICATED TO THE MEMORY OF RAYMOND C. GRIMM 

We obtain Double Dee, TFCX-C, Big Dee, and JET equilibria which are optimized with 
respect to both shape and current profile for stability to ideal MHD modes. With a wall 
reasonably far from the plasma surface we find that the external kink constrains 4, to be above 
two, where q, is the plasma surface value of the safety factor, and the ballooning mode limits 
the value of /J. Then a relevant stable b value for the Double Dee reactor design is over 7%. 
Such a Double Dee equilibrium is not in a separated second stability region and thus does not 
have a problem with accessibility. A relevant stable /? value for the TFCX-C reactor design is 
over 6%. Equivalent relevant stable /I values for the Big Dee (17%) and JET (7%) are 
included for calibration purposes. We compare these relevant stable /? values with the j?‘s 
determined by two recent scaling laws. 0 1986 Academic Press. Inc. 

1. INTRODUCTION 

Using D-D reaction, tokamak reactor designs become economically attractive 
when 8, the ratio of volume averaged plasma to magnetic pressure exceeds 5%. 
Ideal MHD instabilities are of great concern because they have the potential to 
limit j? below this value and so extensive studies have been done to determine ideal 
MHD b limits [l-5]. As the maximum stable value of /?, to be denoted /I,, 
increases with inverse aspect ratio E, elongation K, and triangularity 6, the Double 
Dee reactor design (see Fig. 1) is particularly suited to obtain high values of PC. 

Assuming no wall stabilization, the n = 1 external kink is the most unstable mode 
[6]. However, this n = 1 external kink limit has been marginally exceeded in 
Doublet III [7] and clearly exceded in PDX [8]. Thus the usual theoretical beta 
limits imposed by ideal MHD stability have been violated. An explanation for this 
discrepancy is that the vacuum wall, though resistive, can appear superconducting 
for rotating modes. Wall stabilization is realistic if the real frequency of the kink is 
much greater than the inverse resistive diffusion time of the vacuum vessel [9]. 
Through comparison of ideal MHD p limits with recent Doublet III experimental 
data it has been determined [7] that for q,> 2 (qr is the safety factor at the plasma 
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FIG. 1. Double Dee design and equilibrium with /I = 7.4% and 4, = 2.01. 
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surface), /3 is limited by the ballooning mode if the wall is reasonably far from the 
plasma surface (d/a < 1.5, where d and a are the wall and plasma radii, respec- 
tively). On the other hand, for qr < 2, the n = 1 external kink is unstable even with a 
wall fairly close by. That is, the external kink limits qr > 2 and the ballooning mode 
limits the value of p. 

Thus, to obtain a relevant p limit for the Double Dee reactor design and the 
TFCX-C reactor design it is appropriate to obtain equilibria stable to ballooning 
modes with qr> 2. Then, stable Double Dee equilibria with B’s over 7% are 
obtained with dee-shaped plasmas with small inside indentation (see Fig. 1 for such 

cl 
Cl cl 

Cl 
cl 17 

FIG. 2. TFCX-C design and equilibrium with B = 6% and 4, = 2.00. 
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an equilibrium). These equilibria are not in a separated second stability region and 
hence do not have a problem with accessibility. The achievement of such fi values 
makes possible advanced fuel reactions (D-D and D-He). TFCX-C equilibria stable 
to ballooning modes with q,> 2.0 are obained with /?‘s of 6.0% (see Fig. 2 for such 
an equilibrium). Such equilibria are examined in detail and then compared with 
similar equilibria obtained for the Big Dee and JET. The /Ys obtained for the four 
devices are then compared with the /.?s predicted by two scaling laws, the scaling 
law of Sykes, Turner, and Pate1 [ 10, 111 and the scaling law of Bernard, Helton, 
Moore, and Todd [7]. 

In Section 2, details of the numerical analysis are discussed. In Section 3, the 
results of the stability analysis are presented. In Section 4, these /l limits are com- 
pared with the p’s predicted by the two scaling laws. In Section 5, n = 0, 1, 2, and 3 
kink modes are discussed for the four devices. In Section 6, the main results in the 
paper are summarized and discussed. 

2. NUMERICAL TECHNIQUES 

The maximum stable value of p that can be achieved for a given configuration 
(BE) can be increased through optimization of cross-sectional shape and current 
profile. Numerical techniques have been developed for determining ideal MHD 
stability and for optimizing cross-sectional shape and current profile. These 
numerical techniques have been combined with realistic current profiles and used to 
obtain symmetric free-boundary equilibria stable to ideal modes for poloidal lield- 
shaping coil sets that are specific to the Double Dee, TFCX-C, Big Dee, and JET 
devices. 

The equilibrium calculations were done using GAEQ [12], a realistic ideal 
MHD equilibrium code which permits careful modeling of physical details such as 
limiter position, coil cross-secton, magnetic diagnostics, etc. The MHD equilibria 
are solutions to the Grad-Shafranov equation 

= -p,Rjd= -poR2p’ -ff’, 

with current profiles of the form j, = C[b,h,($) R/R0 + (1 - bp) h,(q) RJR], where 
6 = ($ - kM1(1,- I(/d 27v3cl and 27r$l refer to the flux values at the magnetic axis 
and limiter, respectively, and q. and qr refer to the safety factor at the magnetic axis 
and limiter, respectively. The constant C is used to satisfy the integral constraint 
that the total plasma current be a specified constant. R,, is the radius of the center 
of the midplane limiter and b, is used to vary the poloidal beta &. The function 
h,(G) = [exp(l - $“p> - l.]/(exp( 1.) - 1.) will be referred to as the exponential p’ 
profile. Then clp is a measure of the width of the p’ profile, with increasing up 
corresponding to broader profiles. Similarly, for the exponential profile hA$) = 
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FIG. 3. Definitions of elongation, triangularity, and indentation. 

[exp( 1 - tJbf) - l.]/[exp(l.) - 1.1, CQ is used to describe the variation of the toroidal 
field. 

Beta is defined to be 2~~ jp dV/B$, where BT is the vacuum toroidal field 
measured at Ro. The definition used for beta poloidal: BPS = (l/271) Ip dV/ 
j(V/V’)I’de is th e expression introduced by Shafranov [12], where V is the 
volume and Z the toroidal current. With reference to Fig. 3, elongation denoted K is 
defined to be b/a, triangularity denoted 6 is defined to be c/a and indentation i is 
defined to be df2a. 

The following numerical techniques were used to determine stability to ideal 
MHD modes. Stability to high toroidal mode number was analyzed using the code 
MBC [ 141 which evaluates the ballooning criterion in the limit of infinite toroidal 
mode number. A critical value of /I for marginal stability to ballooning modes is 
calculated by scaling the toroidal field and hence q,, to the values at which the 
equilibria are marginally stable and then calculating /I at that toroidal field. 
Stability to low toroidal mode number perturbations was analyzed using the global 
stability code GATO [15]. GATO computes the eigenfrequencies and eigenmodes 
using finite hybrid elements to minimize the symmetric form of 6 W. 

An equilibrium is determined by a set of parameters: current profile parameters, 
b, clP, and ar and shape parameters which are the flux values on the field-shaping 
coils. Starting from a stable initial equilibrium, an equilibrium optimized for stable 
beta is obtained by varying in turn shape and current profile parameters and retain- 
ing favourable variants subject to certain engineering and other constraints. 
Favorable variants are those for which the present marginal stable j, as determined 
by the scaling defined earlier, is greater than the previous marginal stable /?. Clearly 
this iterative process can determine only a local maximum in ~9. The initial 
equilibrium for each optimization has shape parameters close to the stated 
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geometry of the device. In the course of the optimization the shape parameters are 
somewhat constrained by the shape parameters of the limiter. 

Determination of the exact value of /I, for external modes using mesh 
extrapolation requires large amounts of computer time and is therefore impractical 
for these optimization studies. Instead, an equilibrium is said to be stable if the 
growth rate o is less than a stability cutoff (lo-*a,), where oA is the poloidal 
Alfven frequency. After an optimization is completed, some resulting equilibria are 
examined in detail to ensure stability to external modes by computing the growth 
rate with extrapolation to zero mesh size. 

3. STABILITY RESULTS 

Equilibrium and stability studies have been done for the Double Dee, TFCX-C, 
and JET. Earlier results [S] from equivalent calculations done for the Big Dee have 
been included for comparison purposes. 

3.1. Double Dee Reactor 

This device has twenty coils, R,,= 3.31m, a = 1.39m, E =0.42, and the toroidal 
current is 10 MA. The coil and limiter design can be seen in Fig. 1. Because of the 
geometry of the Double Dee, small aspect ratio, large height to width ratio, and 
significant triangularity, it is expected that there will exist symmetric dee equilibria 
in the device stable to ideal modes at high values of fl. In fact, using very simple 
current profiles, there exist high /I equilibria with a plasma surface shape similar to 
the shape of the limiter. The equilibria described in this paper were obtained using 
the automated shape and current profile optimization code. 

Equilibrium stable to ballooning modes only with no restriction on q, are the 
most optimistic cases. If such cases are to make any sense some mechanism such as 
a cold plasma mantle between the plasma surface and the limiter such that the 
plasma would be in effect surrounded by a perfect conductor must be hypothesized. 
Alternatively, the limiter itself could be considered to have an important stabilizing 
effect [ 163. 

As discussed in detail above, recent calculations indicate that the equilibria stable 
to ballooning modes with q,> 2 are the equilibria which will be close to the 
experimental beta limit and hence warrant further study. It can be shown that these 
equilibria are not in a separated second stability region [17]. In other recent work 
[ 181 it was shown that for low values of q, ( < 3) there is no second stability region 
as a function of indentation. 

With q, > 2 the highest stable fi equilibrium obtained for the Double Dee had 
j3 = 7.4%, q. = 1.32, qr = 2.01, BT = 2.32 T at 10 MA. With q, < 2 the highest stable 
fi equilibrium obtained for the Double Dee had /.I = 10.4%, qo= 1.10, qr= 1.41, 
BT = 1.67 T at 10 MA. 

The two cases described above have increasing b stable to ballooning modes. The 
elongation and indentation increase as /.I increases and qr decreases. The evolution 
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FIG. 4. Evolution of Double Dee equilibrium shape as /lC increases from 7.4 to 10.4%. 

of the shape is shown in Fig. 4. The evolution of the q profile is shown in Fig. 5. The 
optimization was stopped because of computer time limitations but it appears that 
this process would have continued generating equilibria with increasing fi stable to 
ballooning modes, increasing elongation and identation, decreasing q, and with 
further evolution of the shape and q profile as indicated in Fig. 4 and 5. This region 
of stability has not been investigated before. 

3.2. TFCX-C Reactor 

This design has ten coils. The limiter points are given by: 

r=RO+acos(O+6sinO), 

z = UK sin 8, 

J/ 1L 

FIG. 5. Evolution of Double Dee q profile as j, increases from 7.4 to 10.4%. 
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FIG. 6. TFCX-H design and equilibrium with fi = 4.0% and (I, = 2.00. 

where R,, = 3.00 m, a = 1.20 m, 6 = 0.3, and K = 1.6. E = 0.40. The formula above was 
supplied by Dennis Stickler. The coil and limiter design can be seen in Fig. 2. With 
q,> 2, the highest stable /I equilibrium obtained for TFCX-C had fl= 6.0%, 
q. = 1.16, qr = 2.00, B, = 4.30 T at 11.0 MA. With q,< 2, an equilibrium was 
obtained with fl= 7.2%, q,, = 1.17, q,= 1.89, BT = 3.97 T at 11.0 MA. 

TFCX-H was also studied. This design has eighteen coils. The limiter points are 
given by the formula above where R,, = 3.75 m, a = 1.07 m, 6 =0.3, and K= 1.6. 
E = 0.29. The positions of the poloidal field coils were taken from Fig. 7 in Ref. [ 191. 
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FIG. 7. JET device and equilibrium with fl= 7.4% and 4, = 2.00. 
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The limiter design can also be seen in Fig. 6. With qr > 2, the highest stable /I 
equilibrium obtained for TFCX-H had /I = 4.0%, q. = 1.05, qr = 2.00, BT = 4.44 T at 
7.7 MA. With q,< 2, an equilibrium was obtained with /? = 5.0%, q. = 1.05, 
qr= 1.60, BT = 3.91 T at 7.7 MA. These /? values could not be obtained with the 
optimization code but required extensive iterative manipulation of the TFCX-H 
shape and current profile. This difficulty could indicate the existence of important 
design considerations. To obtain optimum /? values the shaping coils should 
probably be reasonable close to the plasma. 

3.3. JET 

This devise has sixteen coils. The limiter points are given by: 

22 = 43.8 - 0.8(rZ - 10.32)2 
1+r2 

The positions of the poloidal field coils were taken from p. 186 of Ref. [20]. The 
coil and limiter design can be seen in Fig. 7. With q/> 2, the highest stable /? 
equilibrium obtained for JET had #I = 7.4%, q. = 1.22, qr= 2.00, BT = 1.53 T at 
4.8 MA. With q,< 2, the highest stable /I equilibrium obtained for JET had 
/I = 8.3%, q. = 1.06, qr= 1.90, B, = 1.44 T at 4.8 MA. 

3.4. The Big Dee 

This device has eighteen coils. R. = 1.70 m, a = 0.72 m, E = 0.42, and 6 and K can 
vary. The coil and limiter design can be seen in Fig. 8. With q, > 2, the highest 

FIG. 8. Big Dee device and equilibrium with p = 17.2% and q, = 2.00. 
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TABLE 1 

Comparison of 8, with p 

Double Dee 10.0 1.39 2.32 
TFCX-C 11.0 1.20 4.30 
JET 4.8 1.25 1.53 
Big Dee 5.0 0.72 1.46 

(1 Sykes, Turner, and Pate1 [ 10, 111. 

13.6 7.4 
9.4 6.0 

11.0 I.4 
20.9 17.2 

stable /I equilibrium obtained for the Big Dee had /I = 17.2%, q,, = 1.11, qr = 2.00, 
and B, = 1.46 T at 5 MA. With q, < 2, the highest stable p equilibrium obtained for 
the Big Dee had fl= 21.8%, qo= 1.08, qr= 1.76, and B,= 1.25 T at 5 MA. These 
results are taken from Ref. [ 51. 

4. SCALING LAWS 

These B’s can be compared with recent scaling laws. Taking for each of the four 
devices, the equilibrium with highest j? with q,> 2 and using the scaling law due to 
Sykes, Turner, and Pate1 [ 10, 111, 

3.5PJp 
8=7, 

T 
we obtain the results in Table I. 

Taking for each of the four devices the equilibrium with highest b with qr > 2, and 
using the scaling law due to Bernard, Helton, Moore, and Todd [7], 

/j = 27.0E’.+$.2 1’0q+l~;*56, 
I 

we obtain the results in Table II. 
Thus, the results obtained here are in general agreement with other experience. 

TABLE II 

Comparison of 8, with p 

Double Dee 0.40 1.95 0.24 2.01 11.2 I.4 
TFCX-C 0.30 1.50 0.25 2.00 5.9 6.0 
JET 0.42 1.73 0.20 2.00 9.9 7.4 
Big Dee 0.40 2.15 0.45 2.00 16.1 17.2 

o Bernard et al. [ 11. 
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TABLE III 

Stability to Kink Modes for Selected Equilibria 

n 

0 1 2 3 

Double Dee s ll u ll 
TFCX-C I4 s s s 
JET s l4 u ” 
Big Dee s s s s 

5. KINK STUDIES 

Kink stability studies have been done for the Double Dee, TFCX-C, the Big Dee, 
and JET. For each of these four machines calculations and convergence studies 
were done using GATO to determine if an assumed superconducting wall through 
the center of the poloidal field-shaping coils of the device would suffice to stabilize 
the n = 0, 1,2, and 3 modes. For each of these devices, the equilibrium chosen for 
analysis was the equilibrium with highest /I stable to ballooning modes with q, > 2. 
Table III summarizes the results of these studies. 

These calculations could be continued with an assumed superconducting wall at 
various positions closer to the plasma. 

6. DISCUSSION 

We have obtained Double Dee and TFCX-C equilibria optimized with respect to 
both shape and current profile for stability to ideal MHD modes. Our recent 
calculations indicate that a Double Dee equilibrium stable to ballooning modes at 
7.4% with qr > 2 is the equilibrium which will be close to the experimental fi limit. 
This equilibrium is not in a separated second stability region and hence does not 
have problems with accessibility. The achievement of such /I values makes fusion 
reactors more credible. Ignoring kink modes, we have found a new high /I bean 
stability region for Double Dee (see Figs. 4 and 5). This discovery suggests that it is 
possible to design bean reactors which require no internal pusher coil. A relevant /I 
value for TFCX-C is 6% with qr > 2. A relevant stable /I value for JET is 7.4% with 
qr > 2. A relevant stable /I value for the Big Dee is 17% with q, > 2. 

These /I values are in agreement with both of the scaling laws we used, the scaling 
law due to Sykes, Turner, and Pate1 and the scaling law due to Bernard, Helton, 
Moore, and Todd. The agreement is somewhat better with the latter. 
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